
Amélioration de l’interprétabilité des explications de SHAP
grâce à la découverte de sous-groupes

Résumé. L’intégration de modèles prédictifs en médecine nécessite des expli-
cations compréhensibles pour soutenir la décision clinique. Cette étude prélimi-
naire propose une approche post hoc, model-agnostic combinant SHAP et la dé-
couverte de sous-groupes afin de générer des règles explicites de type SI–ALORS.
Cette combinaison permet de produire simultanément des explications locales et
globales, tout en offrant des explications plus précise que les facteur d’impor-
tance de SHAP et une compréhension plus riche des interactions entre variables.
Les expériences réalisées sur quatre jeux de données médicaux montrent une
large couverture et une caractérisation précise des classes, avec des valeurs éle-
vées de WRAcc et de lift. Les explications locales obtenues présentent une fi-
délité supérieure à 90% pour les modèles binaires. Bien que développée dans
un contexte médical, l’approche peut être appliquée à tout domaine nécessitant
intelligibilité et confiance dans les modèles prédictifs.

1 Introduction
L’utilisation croissante de l’intelligence artificielle en médecine s’accompagne d’un besoin

essentiel : disposer d’outils capables de fournir des informations compréhensibles et exploi-
tables par les cliniciens. L’intelligibilité constitue un enjeu central pour analyser les données,
interpréter des relations complexes et soutenir la décision médicale. C’est dans cette perspec-
tive que différentes approches cherchent à rendre visibles les mécanismes sous-jacents aux
données ou aux modèles prédictifs.

Les modèles interprétables, issus de l’exploration de données, produisent des modèles di-
rectement lisibles, capables de faire émerger des motifs locaux et des relations entre variables,
avec pour objectif d’extraire de nouvelles connaissances non triviales (Aggarwal, 2015). Elles
s’avèrent pertinentes pour prendre en compte la forte variabilité inter-individuelle des données
médicales (Moranges et al., 2021).

Les méthodes d’intelligence artificielle explicable (XAI) visent à éclairer le fonctionnement
de modèles prédictifs complexes, dits « boîte noire ». Parmi elles, SHAP (SHapley Additive
exPlanations) (Lundberg et Lee, 2017) est devenue la référence en médecine (Caterson et al.,
2024), grâce à sa capacité à fournir des explications locales et globales, et à son indépendance
au modèle prédictif utilisé (model-agnostic). Néanmoins, ces explications globales reposent
principalement sur des valeurs moyennes d’importance, qui ne capturent ni les interactions
entre variables, ni la spécificité de certains profils de patients. Elles peuvent ainsi masquer des
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relations cliniques multifactorielles et réduire la richesse des phénomènes biologiques sous-
jacents.

Face à ces limites, notre objectif est de rendre explicables des modèles prédictifs perfor-
mants, en développant une approche post hoc, model-agnostic et compatible avec le raisonne-
ment clinique. Pour cela, nous proposons de combiner les explications SHAP avec la décou-
verte de sous-groupes (DS) (Wrobel, 1997), une technique issue de l’exploration de données
permettant de générer des règles explicites de type SI–ALORS, proches du raisonnement cli-
nique habituel. D’un côté, ces règles permettent de relier plusieurs variables entre elles. D’un
autre côté, elles facilitent la discussion, la validation et l’appropriation des modèles par les
experts du domaine.

Nous entrevoyons trois points de distinction par rapport à l’existant. Premièrement, la DS
permet d’identifier des sous-groupes cohérents de patients, révélant des interactions multidi-
mensionnelles et offrant des explications plus spécifiques et fines que les approches globales
fondées sur des moyennes. Deuxièmement, l’intégration directe des valeurs de SHAP pour
produire des règles qui reflètent fidèlement le comportement interne du modèle. Enfin, contrai-
rement aux méthodes existantes basées sur des règles (Ribeiro et al., 2018; Guidotti et al.,
2019; Yuan et al., 2022), notre approche fournit simultanément des explications globales et
locales, un point essentiel en médecine : les explications globales permettent aux médecins de
comprendre et de valider le fonctionnement général du modèle, condition indispensable pour
instaurer la confiance et favoriser son adoption clinique, tandis que les explications locales
offrent une justification précise et individualisée de chaque prédiction, facilitant la prise de
décision et la communication avec le patient.

Ainsi, la combinaison de SHAP et de la DS constituerait une couche d’explicabilité contex-
tuelle, complémentaire aux explications classiques de SHAP, et proposerait une manière nou-
velle et exploitable de rendre les modèles complexes plus transparents et plus exploitables pour
la décision médicale.

2 Méthode d’extraction de règles à partir de SHAP

2.1 Cadre classique de SHAP

Pour extraire des explications sous forme de règles, nous nous appuyons sur le cadre SHAP
introduit par Lundberg et Lee (2017), fondé sur les valeurs de Shapley issues de la théorie
des jeux coopératifs. SHAP fournit une méthode additive d’attribution des contributions des
variables, satisfaisant trois propriétés clés : l’exactitude locale, la nullité et la cohérence.

Étant donné un modèle de prédiction f et une instance x, SHAP cherche à expliquer la
prédiction f(x) à l’aide d’un modèle explicatif simplifié g, défini par :

g(z) = ϕ0 +

M∑
j=1

ϕjzj ,

où chaque zj indique si la variable j est prise en compte dans l’explication (zj = 1 si la variable
est présente, zj = 0 sinon), et où ϕj représente la contribution associée à cette variable. Les
valeurs ϕj quantifient ainsi l’effet individuel de chaque caractéristique sur la prédiction du
modèle.
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Soit ϕx,j la contribution de la variable j à la prédiction f(x). Pour une instance x, la valeur
ϕx,j correspond à la valeur de Shapley classique :

ϕx,j =
∑

S⊆F\{j}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {j})− fx(S)] ,

où F = {1, . . . ,M} désigne l’ensemble des variables, et S l’ensemble des indices non nuls
de z, c’est-à-dire les variables considérées comme présentes dans l’entrée simplifiée. La fonc-
tion fx(S) représente la prédiction moyenne du modèle, lorsque seules les variables du sous-
ensemble S sont fixées.

Les valeurs SHAP offrent une approche unifiée et théoriquement fondée pour attribuer une
importance aux variables dans les prédictions individuelles, en accord les principes d’équité
issus de la théorie des jeux. En pratique, le calcul de fx(S) doit être approximée et plusieurs
stratégies sont posssibles. La bibliothèque SHAP en Python propose par exemple les approches
« interventional » (Lundberg et Lee, 2017) et « tree path dependent » (Lundberg et al., 2018).
Ces stratégies influencent la manière dont les variables n’appartenant pas à S sont marginali-
sées ou échantillonnées, selon que les dépendances entre variables sont préservées ou rompues.

SHAP a la particularité de fournir à la fois des explications locales et globales (Hermosilla
et al., 2025; Vimbi et al., 2024), un atout essentiel dans les contextes cliniques. Cependant,
les sorties de SHAP peuvent être difficiles à interpréter correctement pour les cliniciens ne
disposant pas d’une formation en apprentissage automatique (Al-Absi et al., 2024; Alkhan-
bouli et al., 2025). Chaque variable se voit attribuer une valeur – positive, négative ou nulle –
indiquant sa contribution par rapport à une prédiction de référence. Sans contexte supplémen-
taire, cette information peut sembler abstraite pour les non-spécialistes (Salih et al., 2025). Par
exemple, une valeur SHAP de +0.8 pour « hypertension » suggère une augmentation du risque
prédit, sans préciser l’ampleur de l’effet ni le mécanisme biologique sous-jacent. De plus, les
moyennes globales de SHAP peuvent masquer des effets spécifiques à certains sous-groupes :
des variables déterminantes pour une sous-population peuvent être moins importantes pour
d’autres (Lundberg et al., 2020). Enfin, bien que de nombreux facteurs de risque cliniques in-
teragissent, SHAP fournit peu d’informations sur leurs dépendances. Les valeurs d’interaction
ne sont disponibles que pour les modèles arborescents et ne capturent que des effets entre 2
facteurs, négligeant les interactions d’ordre supérieur et risquant ainsi de simplifier des méca-
nismes complexes (Lundberg et al., 2020).

Pour pallier ces limites de SHAP, nous proposons de combiner SHAP avec la DS, afin
d’extraire des règles interprétables. Ces règles visent à fournir des explications globales plus
précises, contextualisées et capables de capturer des interactions complexes entre facteurs.

2.2 Découverte de sous-groupes

La découverte de sous-groupes est une tâche d’exploration de données visant à identifier
des sous-ensembles d’une population dont la distribution, par rapport à une variable cible, dif-
fère significativement de celle observée dans l’ensemble du jeu de données. L’objectif est de
révéler des motifs locaux à la fois statistiquement pertinents et interprétables, permettant de
mieux comprendre les conditions dans lesquelles la classe cible se manifeste avec une fré-
quence atypique.
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Formellement, soit D l’ensemble de données analysé. Dans un contexte de classification
avec un espace de sortie C, soit c ∈ C la classe cible d’intérêt. On note D(c) l’ensemble des
instances appartenant à la classe c.

Un sous-groupe est défini par une règle R correspondant à une conjonction de conditions
sur les variables :

R = {(jk, ◦k, vk) | k ∈ F}

où chaque triplet spécifie une condition sur la variable jk à l’aide d’un opérateur relationnel
◦k (tel que <, > ou =) et d’une valeur seuil vk. L’ensemble des instances du jeu de données
satisfaisant la règle R est noté cov(R). Parmi ces instances couvertes, on distingue covc(R) =
cov(R) ∩D(c), le sous-ensemble des instances appartenant à la classe cible c.

Pour évaluer la qualité de tels sous-groupes, la WRAcc (Weighted Relative Accuracy) (La-
vrač et al., 2004) est définie comme suit :

WRAcc(R) =
|cov(R)|

|D|

(
|covc(R)|
|cov(R)|

− |D(c)|
|D|

)
Cette mesure quantifie la différence entre la proportion d’instances observée de la classe

cible au sein du sous-groupe et sa proportion attendue dans l’ensemble du jeu de données. Cette
différence est ensuite pondérée par le support du sous-groupe, c’est-à-dire sa taille relative
par rapport au jeu de données, favorisant ainsi l’identification de sous-groupes significatifs et
représentatifs.

2.3 Une mesure d’intérêt à partir des valeurs SHAP
Dans ce travail, nous proposons d’étendre la mesure classique de WRAcc en la pondérant

par les valeurs de Shapley au niveau des instances.
Tout d’abord, nous normalisons les valeurs de SHAP. Ces valeurs n’étant pas bornées dans

un intervalle fixe, et leur amplitude peut varier selon l’échelle des sorties du modèle. Pour cette
raison, nous les normalisons dans l’intervalle [0, 1] ainsi :

ϕ̃x,j =
ϕx,j − ϕmin

ϕmax − ϕmin
,

où ϕmin = min
a∈D, b∈F

ϕa,b et ϕmax = max
a∈D, b∈F

ϕa,b.

Pour chaque règle R, nous définissons l’importance d’une instance x comme suit :

wR
x =

∑
j∈FR

ϕ̃x,j

où FR l’ensemble des variables impliquées dans la règle R. wR
x agrège les contributions de

toutes les variables utilisées dans la règle, reflétant ainsi le degré selon lequel l’instance x
participe au sous-groupe capturé par R.

Pour tout sous-ensemble S ⊆ D, nous définissons son poids total de Shapley comme suit :

W (S) =
∑
x∈S

wR
x .
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En nous appuyant sur cette notation, nous étendons la mesure classique WRAcc afin d’y
intégrer les pondérations d’instances basées sur les valeurs de Shapley. La mesure obtenue,
que nous appelons WRAcc pondérée par les valeurs de Shapley, est définie comme suit :

WRAccϕ(R) =
W (cov(R))

W (D)
·

(
W (covc(R))

W (cov(R))
−

W
(
D(c)

)
W (D)

)

Cette version pondérée évalue si un sous-groupe concentre une part disproportionnée de
l’importance explicative dérivée des valeurs de Shapley pour la classe cible, par rapport à l’en-
semble du jeu de données. Ce faisant, elle adapte la mesure WRAcc afin de mettre en évidence
les sous-groupes qui ne sont pas seulement statistiquement significatifs, mais également étroi-
tement alignés sur les schémas d’attribution internes du modèle. Pour une illustration détaillée
de cette mesure, le lecteur est invité à consulter la Figure A1 des Annexes.

On peut noter ici l’importance de la normalisation des valeurs de SHAP. Des pondérations
négatives inverseraient l’effet attendu des contributions des variables et conduiraient à une éva-
luation erronée des sous-groupes. En ramenant les valeurs dans l’intervalle [0, 1], on améliore
ainsi l’interprétabilité de la mesure pondérée.

2.4 Algorithme d’extraction de règles SHAP

Nous appliquons la DS en prenant, pour chaque instance x, la classe prédite f(x) comme
variable cible c. Pour orienter la sélection de ces règles, nous exploitons les valeurs SHAP
et les intégrons directement dans le calcul de la WRAccϕ(R). Les sous-groupes maximisant
cette mesure de qualité sont ensuite recherchés au moyen d’une Beam Search, un algorithme
heuristique qui explore l’espace des règles de manière progressive en ne conservant, à chaque
itération, que les candidats les plus prometteurs. Cette stratégie permet d’identifier efficace-
ment des règles cohérentes avec les contributions locales du modèle tout en limitant le coût
computationnel.

Le nombre de règles à générer constitue un paramètre d’entrée de l’algorithme (result_set_size),
qui sélectionne les règles les mieux classées selon leurs scores de WRAcc pondérés par Shapley.
Un autre paramètre fixe le nombre maximal de conditions par règle (depth). Ainsi l’algorithme
repose sur un deux paramètres intuitifs, le rendant accessible aux non-spécialistes tout en leur
permettant de contrôler le niveau de complexité des règles et d’obtenir des explications à la
fois pertinentes et interprétables. Un exemple d’explications globales est donné Fig.A2.b des
Annexes.

2.5 Génération de règles locales
Nous cherchons à fournir des explications au niveau individuel en identifiant, pour chaque

prédiction, lesquelles des règles globalement extraites sont activées par une instance donnée.
Étant donnée une instance x ∈ D à expliquer, cette procédure s’effectue en trois étapes :

1. Filtrage des règles basé sur la couverture. Nous sélectionnons d’abord l’ensemble
des règles qui couvrent x :

Rcov(x) = {R | x ∈ cov(R)} .
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2. Filtrage des contributions SHAP positives. Parmi cet ensemble, nous ne conservons
que les règles pour lesquelles toutes les variables de FR présentent des valeurs de
Shapley positives pour l’instance x :

Rpos(x) = {R ∈ Rcov(x) | ϕx,j > 0 ∀j ∈ FR} .

3. Classement des règles selon la valeur moyenne de SHAP. Enfin, les règles sont clas-
sées selon leur valeur moyenne de Shapley normalisée pour les variables impliquées
dans la règle. Pour une règle R ∈ Rpos(x), nous définissons :

ϕx(R) =
1

|FR|
∑
j∈FR

ϕ̃x,j .

Les règles sont ensuite triées par ordre décroissant de ϕx(R) afin d’être présentées
comme explications.

Un exemple d’explications locales est donné Fig.A2.d des Annexes. Le fait que les explica-
tions locales soient directement issues des règles globales garantit l’adéquation entre ces deux
niveaux d’interprétation.

3 Expériences

3.1 Métriques d’évaluation
Pour évaluer le cadre proposé, nous nous appuyons sur un ensemble de métriques complé-

mentaires permettant de mesurer à la fois la qualité des explications et les propriétés des règles
extraites. Ces métriques sont définies à deux niveaux : au niveau de l’instance, pour l’éva-
luation des explications locales, et au niveau de la règle, pour évaluer l’ensemble des règles
globales.

Pour chaque instance x ∈ D, l’explication locale est donnée par l’ensemble des règles acti-
vées Rpos(x). Ces règles produisent collectivement une prédiction fondée sur les explications,
notée ŷexpl(x), obtenue par un vote majoritaire pondéré :

ŷexpl(x) = argmax
c∈C

∑
R∈Rpos(x)

1{c(R)=c} ϕx(R),

où c(R) désigne la classe prédite par la règle R.
En cas d’égalité, la règle présentant le plus faible classement selon ϕx(R) est retirée itéra-

tivement jusqu’à l’obtention d’une classe unique. Cette procédure garantit que les prédictions
fondées sur les explications demeurent à la fois déterministes et cohérentes avec l’ordre induit
par les valeurs SHAP.

Nous cherchons à évaluer la cohérence entre la prédiction fondée sur les explications et
celle du modèle « boîte noire ». À cette fin, nous calculons la fidélité, définie comme la pro-
portion d’instances pour lesquelles l’explication reproduit la sortie initiale du modèle :

fidélité =
1

|D|
∑
x∈D

1{ŷexpl(x)=f(x)}.
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Nous évaluons également la fidélité des explications par rapport aux étiquettes réelles au
moyen de la métrique de précision (accuracy) :

précision =
1

|D|
∑
x∈D

1{ŷexpl(x)=y(x)}.

Nous examinons également la généralisabilité des règles globales à l’ensemble du jeu de
données en mesurant leur couverture. Celle-ci est évaluée par la complétude, qui quantifie la
proportion d’instances pour lesquelles au moins une règle explicative est disponible.

complétude =
|{x ∈ D | Rpos(x) ̸= ∅}|

|D|
.

Afin de garantir que les explications locales demeurent compréhensibles pour les utilisa-
teurs, nous vérifions si l’ensemble des règles locales associées à chaque instance prédit une
classe cohérente. À cette fin, nous utilisons la cohérence, qui mesure, parmi les instances cou-
vertes par au moins une règle, la proportion de celles pour lesquelles toutes les règles explica-
tives s’accordent sur la même classe prédite :

cohérence =
|{x ∈ D | Rpos(x) ̸= ∅ ∧ ∃c ∈ C ∀R ∈ Rpos(x), c(R) = c}|

|{x ∈ D | Rpos(x) ̸= ∅}|
.

Au niveau des règles, nous évaluons chaque sous-groupe individuellement. Nous rappor-
tons d’abord sa valeur de WRAcc, déjà définie dans la Section 2.2. En complément de la
WRAcc, nous utilisons également le lift afin de mieux caractériser la qualité des sous-groupes
identifiés. Alors que la WRAcc évalue l’exceptionnalité d’un sous-groupe relativement à l’en-
semble des données, le lift mesure l’augmentation relative de la fréquence de la classe cible au
sein du sous-groupe par rapport à sa fréquence dans l’ensemble du jeu de données. Formelle-
ment, le lift d’une règle R est défini comme suit :

lift(R) =
|covc(R)|
|cov(R)|

/∣∣D(c)
∣∣

|D|
.

Une valeur de lift supérieure à 1 indique que le sous-groupe est plus enrichi en instances
de la classe cible que ce qui serait attendu par hasard.

3.2 Protocole expérimental

Notre évaluation est menée sur quatre jeux de données médicaux : Framingham, Heart-
attack, Covid19 et Obesity, résumés dans le Tableau 1. Chaque jeu de données est associé à un
modèle prédictif distinct, entraîné pour atteindre une haute précision de prédiction. Le choix
de jeux de données et de modèles hétérogènes vise à démontrer la généralité de l’approche
proposée à travers différentes distributions de données et divers paradigmes de modélisation.
Les valeurs SHAP ont été obtenues à l’aide de la bibliothèque SHAP, et nous avons réalisé une
extension de la librairie pysubgroup en y intégrant la mesure WRAccϕ pour réaliser la DS.
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Jeux de données |Classes| |Caractéristiques| |Instances| Modèle Précision du modèle
Framingham 2 15 3,658 Random Forest 0.9758
Heart-attack 2 8 2,111 Decision Tree 0.9924

Covid19 2 19 1,048,575 Logic Regression 0.9384
Obesity 7 15 2,111 MultiLayer Perceptron 0.8511

TAB. 1 – Résumé des jeux de données utilisés pour l’évaluation, incluant le nombre de classes,
de variables et d’instances, ainsi que les modèles prédictifs employés et leurs précisions res-
pectives.

3.3 Résultats
Pour chaque jeu de données, nous avons calculé les métriques d’évaluation introduites dans

la Section 3.1 selon différentes paramétrisations de l’algorithme de DS. Plus précisément, la
profondeur maximale des règles (depth) a été ajustée de 1 à 5, et le nombre de règles géné-
rées par classe cible (result_set_size) variait de 5 à 20, par incréments de 5. Les résultats de
ces expériences, illustrant l’évolution de la précision, de la fidélité, de la complétude et de la
cohérence selon les différents paramètres, sont présentés pour le jeu de données Covid19 dans
la Fig. 1. Les résultats correspondants pour les jeux de données Framingham, Heart-attack et
Obesity sont fournis dans le fichier Annexes (Fig. A3–A5).

Tendances générales. La précision et la fidélité demeurent constamment élevées, dépassant
0.8 pour l’ensemble des classifieurs binaires, quelle que soit la paramétrisation ou l’architec-
ture du modèle. Cela confirme que les règles locales reproduisent fidèlement les prédictions
du modèle (fidélité) tout en restant proches des étiquettes réelles (précision). La fidélité est gé-
néralement plus élevée et plus stable que la précision, indiquant que les explications capturent
la logique interne du modèle avec une remarquable cohérence. La complétude est également
élevée, toujours supérieure à 0.8, montrant que les sous-groupes découverts couvrent une large
part du jeu de données et semblent bien se généraliser. En revanche, la cohérence varie davan-
tage selon les jeux de données et les configurations de paramètres. Certaines instances restent
couvertes par des règles contradictoires, ce qui suggère que la procédure de filtrage fondée sur
SHAP atténue, sans toutefois éliminer totalement, les conflits entre règles.

Impact du nombre de règles générées. L’augmentation du nombre de règles par classe a
un effet direct sur la complétude, qui croît logiquement à mesure qu’un plus grand nombre
de règles couvre une part plus importante des données. La précision et la fidélité s’améliorent
également avec le nombre de règles avant de se stabiliser, sans jamais diminuer. Cela indique
que, même si des règles supplémentaires peuvent introduire une certaine redondance, elles ne
dégradent pas la qualité explicative globale. Cependant, un ensemble de règles plus large tend
à réduire la cohérence : à mesure que le nombre de règles augmente, la probabilité de contra-
dictions entre elles s’accroît également. En résumé, la génération d’un plus grand nombre de
règles renforce la couverture et la fidélité, mais au prix d’une cohérence interne réduite.

Impact de la profondeur des règles. La profondeur maximale autorisée des règles a des
effets différenciés sur les métriques d’évaluation. Des règles plus profondes tendent à être
plus spécifiques, ce qui réduit les contradictions et améliore ainsi la cohérence. Cependant, la
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FIG. 1 – Métriques d’évaluation pour le jeu de données Covid19 selon différents réglages de
paramètres : (a) fidélité, (b) précision, (c) complétude et (d) cohérence.

fidélité diminue généralement avec la profondeur, car des règles très spécifiques s’accordent
moins bien avec les frontières de décision globales du modèle (à l’exception des classifieurs
arborescents, pour lesquels une profondeur élevée reste cohérente avec la structure du modèle).
L’exactitude suit une tendance similaire à celle de la fidélité, les règles trop spécialisées ayant
une capacité de généralisation plus faible. Fait intéressant, les règles de profondeur égal à 1
offrent la meilleure précision et fidélité, ce qui s’explique par le fait que les valeurs SHAP
sont calculées au niveau des variables individuelles et non des interactions entre variables.
Dans l’ensemble, des règles excessivement profondes améliorent la cohérence interne mais
réduisent la capacité des explications à reproduire fidèlement le comportement du modèle.

Stratégie de paramétrisation. Les résultats expérimentaux permettent de dégager plusieurs
recommandations pour le choix des paramètres. Premièrement, le nombre de règles par classe
doit être suffisamment élevé pour garantir une bonne couverture et une fidélité stable. Comme
la précision et la fidélité atteignent un plateau sans diminuer, un ensemble de règles plus
large peut être privilégié, à condition que la baisse de cohérence reste acceptable pour l’usage
visé. Deuxièmement, la profondeur maximale des règles doit rester modérée. Des règles trop
peu profondes peuvent engendrer des contradictions, tandis que des règles trop profondes dé-
gradent la complétude, la fidélité et l’exactitude. Le compromis le plus efficace se situe à une
profondeur intermédiaire, où la cohérence est déjà satisfaisante sans entraîner de perte substan-
tielle de fidélité.
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Mieux interpréter SHAP grâce à la découverte de sous-groupes

Dataset depth result_set_size Fidelity Accuracy Completeness Consistency
Framingham 2 10 0.9 0.88 0.97 0.8
Heart-attack 2 10 0.96 0.95 1 0.98

Covid19 2 20 0.92 0.88 0.92 0.99
Obesity 3 10 0.76 0.69 0.87 0.68

TAB. 2 – Paramètres optimaux (profondeur maximale des règles et nombre de règles par
classe) et métriques d’évaluation correspondantes (fidélité, exactitude, complétude et cohé-
rence) pour chaque jeu de données.

(a) (b)

FIG. 2 – Boxplots of rule-level quality measures obtained with the selected parameters for
each dataset : (a) Classic WRAcc and (b) Lift.

Les choix de paramètres effectués pour chaque jeu de données, ainsi que les valeurs ob-
tenues pour les différentes métriques, sont présentés dans le Tableau 2. Ces paramètres ont
été sélectionnés afin de maximiser un compromis entre cohérence et fidélité, une forte fidélité
sans cohérence conduisant à des explications peu interprétables. En complément des métriques
d’évaluation globales, nous évaluons également la qualité propre des règles extraites. Deux
mesures complémentaires sont mobilisées à cet effet : la WRAcc classique et le Lift. Les distri-
butions de WRAcc et de Lift pour l’ensemble des règles, calculées selon les paramètres retenus
pour chaque jeu de données, sont illustrées dans la Figure 2. Comme les valeurs de WRAcc
sont systématiquement positives et que les valeurs de Lift demeurent strictement supérieures
à 1, ces résultats démontrent que chaque règle extraite est bien spécifique à sa classe cible et
qu’elle capture une déviation significative par rapport à la distribution globale.

4 Limites et travaux futurs

Nous identifions plusieurs limites à l’approche proposée. Premièrement, la méthode ac-
tuelle est restreinte aux tâches de classification, car elle repose sur la distribution de classes
cibles discrètes de la DS. Deuxièmement, les explications locales peuvent inclure des règles
prédisant des classes différentes, notamment lorsque la profondeur maximale des règles est
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fixée à 1. De telles règles conflictuelles peuvent nuire à l’interprétabilité et compliquer la com-
préhension du raisonnement décisionnel du modèle. Troisièmement, les explications locales
ne sont disponibles que pour les instances satisfaisant au moins une règle extraite et présentant
des valeurs SHAP positives. Les instances non couvertes demeurent donc inexpliquées, ce qui
peut limiter l’utilité de la méthode dans des contextes à forte dimensionnalité où la couverture
des sous-groupes est faible. L’augmentation du nombre de règles générées peut atténuer ce pro-
blème, mais au prix d’une redondance accrue. La redondance constitue elle-même une autre
limite : la DS peut produire des règles chevauchantes ou imbriquées – par exemple « X > 15 »
et « X > 15 ∧ Y = True » – qui réduisent la clarté sans apporter d’information supplémen-
taire. Des travaux futurs devraient ainsi explorer des stratégies d’élagage et de sélection basées
sur la diversité afin de maintenir un ensemble de règles compact et non redondant. Enfin, le
cadre est applicable seulement sur des données tabulaires. L’étendre à d’autres modalités de
données, telles que les séries temporelles, les images ou les graphes, élargirait considérable-
ment son champ d’application.

5 Conclusion

Ce travail propose une approche préliminaire combinant DS et SHAP de produire des règles
explicatives cohérentes avec le comportement interne d’un modèle prédictif. La méthode four-
nit une intelligibilité plus contextualisée que les approches fondées sur les facteurs d’impor-
tances, et se rapproche du raisonnement clinique grâce à des règles explicites et discutables.
Cette contribution ouvre des perspectives pour une explicabilité mieux alignée avec les besoins
des praticiens et offre un cadre flexible, applicable à tout modèle prédictif et à tout domaine où
transparence et compréhension sont essentielles.
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Summary
The integration of predictive models in medicine requires understandable explanations

to support clinical decision-making. This preliminary study introduces a post-hoc, model-
agnostic approach that combines SHAP with DS to generate explicit IF–THEN rules. This
combination provides both local and global explanations, while offering more precise insights
than SHAP feature importance and a richer understanding of interactions between variables.
Experiments conducted on four medical datasets demonstrate broad coverage and accurate
class characterization, with high WRAcc and lift values. The associated local explanations
achieve over 90% fidelity for binary models. Although developed in a medical context, the
approach can be applied to any domain requiring intelligibility and trust in predictive models.
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Annexes

A Proposition

Figure A1: Illustration de la mesure de qualité proposée nommée WRAccϕ(R)
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B Exemples d’explications

(a) Visualisation globale classique des valeurs SHAP.

WRAccϕ(R) R c
0.084 prevalentHyp=0 → 0
0.076 male=0 AND prevalentHyp=0 → 0
0.076 male=0 → 0
0.073 age < 0.26 → 0
0.071 diabetes=0 AND prevalentHyp=0 → 0
0.071 BPMeds=0 AND prevalentHyp=0 → 0
0.069 prevalentHyp=0 AND prevalentStroke=0 → 0
0.063 BPMeds=0 AND male=0 → 0
0.062 diabetes=0 AND male=0 → 0
0.061 age ∈ [0.26 : 0.42[ → 0
0.084 prevalentHyp=1 → 1
0.082 age ≥ 0.74 → 1
0.077 sysBP ≥ 0.32 → 1
0.076 male=1 → 1
0.069 prevalentHyp=1 AND prevalentStroke=0 → 1
0.068 age ≥ 0.74ANDprevalentStroke = 0 → 1
0.066 age ≥ 0.74ANDdiabetes = 0 → 1
0.065 prevalentHyp=1 AND sysBP ≥ 0.32 → 1
0.064 prevalentStroke=0 AND sysBP ≥ 0.32 → 1
0.062 diabetes=0 AND prevalentHyp=1 → 1

(b) Règles globales extraites par notre méthode (10
par classe).

(c) Explication locale SHAP pour la première in-
stance du jeu de test.

ϕ̄x(R) R c
0.2174 prevalentHyp=1 AND sysBP ≥ 0.32 → 1
0.1473 sysBP ≥ 0.32 → 1
0.0828 male=1 → 1
0.0701 prevalentHyp=1 → 1

(d) Explication locale générée par notre méthode
pour cette même instance.

Figure A2: Comparaison des explications globales (haut) et locales (bas) pour le jeu de données
Framingham, en opposant les explications fournies par SHAP classique (gauche) à celles générées
par notre méthode (droite).
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C Résultats du paramètrage

(a) (b)

(c) (d)

Figure A3: Métriques d’évaluation pour le jeu de données Framingham selon différents réglages de
paramètres : (a) fidélité, (b) précision, (c) complétude et (d) cohérence.
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(a) (b)

(c) (d)

Figure A4: Métriques d’évaluation pour le jeu de données Heart-attack selon différents réglages de
paramètres : (a) fidélité, (b) précision, (c) complétude et (d) cohérence.

(a) (b)

(c) (d)

Figure A5: Métriques d’évaluation pour le jeu de données Obesity selon différents réglages de
paramètres : (a) fidélité, (b) précision, (c) complétude et (d) cohérence.

4


	1 Introduction
	2 Méthode d'extraction de règles à partir de SHAP
	2.1 Cadre classique de SHAP
	2.2 Découverte de sous-groupes
	2.3 Une mesure d'intérêt à partir des valeurs SHAP
	2.4 Algorithme d'extraction de règles SHAP
	2.5 Génération de règles locales

	3 Expériences
	3.1 Métriques d'évaluation
	3.2 Protocole expérimental
	3.3 Résultats

	4 Limites et travaux futurs
	5 Conclusion

